
1 Total variation

Total-variation (TV) regularization reconstructs an image u from a noisy
image f as the minimizer of the following functional:

F (u) =

∫

Ω

|∇u| +
λ

2

∫

Ω

|u− f |2. (1)

Here, Ω is the image domain, generally a rectangle, the first term is TV (u),
the total variation of u, the second term is the data fidelity term, and λ is
the regularization parameter, which controls the relative importance of the
two terms.

For functions u that are not differentiable, we need a weak definition of
TV (u):

TV (u) = max
g

∫

Ω

u∇ · g, (2)

where the maximization is over two-dimensional-valued functions g ∈ C1
c (Ω)

such that ‖g‖∞ ≤ 1, where ‖g‖∞ = ‖(g1, g2)‖∞ = ‖
√

g2
1 + g2

2‖∞. That this
equals

∫
|∇u| when u is smooth is a consequence of integration by parts,

plus the elementary fact that |x| = max|v|≤1 xv as well as max|v|≤1(−xv).
The result of this is that |∇u| is in general a measure, though one that can
be identified with a function in many cases.

The functions u ∈ L1(Ω) satisfying TV (u) < ∞ are said to have bounded
variation, and form the space BV (Ω). Adding the L1 norm to TV gives
a norm which makes BV a Banach space. This is the domain of F (since
BV ⊂ L2). This functional can be shown to be lower semicontinous and
is strictly convex, which guarantees that it has a minimizer and that the
minimizer is unique.

1.1 Euler-Lagrange equation

To minimize F , we set an appropriate sense of derivative equal to zero. This
sense is the first variation, also known as the Gateaux derivative, which we
will write as simply F ′. First, we fix arbitrary v ∈ BV (a “test function”)
and compute the directional derivative:

DvF (u) =

∫ ∇u

|∇u| ·∇v + λ

∫
(u− f)v. (3)

1



This clearly requires ∇u (= 0 almost everywhere to make sense. If you go
through the computation in careful detail, you find that the limit doesn’t
exist for every v ∈ BV ; for example,

∫
|∇v|2 needs to be finite. This makes

the derivatives involved less than completely rigorous, something usually
shrugged off due to the eventual implementations being on finite-dimensional
subspaces.

We then obtain F ′(u) as the “function” satisfying DvF (u) = 〈F ′(u), v〉
for any test function, though it is even less likely to truly be a function than
|∇u|. We thus use integration by parts to isolate v:

DvF (u) =

∫ (
−∇ · ∇u

|∇u| + λ(u− f)

)
v, (4)

giving

F ′(u) = −∇ · ∇u

|∇u| + λ(u− f). (5)

The Euler-Lagrange equation for the problem of minimizing F is obtained by
setting the right side of the previous equation to zero. The boundary term
from the integration by parts can be dropped if we assume that the normal
derivative of u at the boundary is zero. This leads to Neumann boundary
conditions in PDE minimization methods.

1.2 Linear operator inversion

One use of total-variation minimization is to regularize the inversion of lin-
ear operators. This is especially useful in the case that the operator has
a smoothing effect, in which case its inverse will amplify noise. Examples
include the following:

operator inverse purpose
identity identity denoising

convolution deconvolution deblurring
Abel transform Abel inverse radiographic inversion of

cylindrically-symmetric objects
antidifferentiation differentiation numerical differentiation of noisy data

Suppose the linear operator is T . In each of the above cases, T is invertible
and bounded (on the appropriate space), but in all but the first case the
inverse operator is unbounded.
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We incorporate T into the functional:

F (u) =

∫

Ω

|∇u| +
λ

2

∫

Ω

|Tu− f |2. (6)

We thus are measuring data fidelity in the “data space” but regularizing
in the “object space.” This terminology arises in the case of radiography,
where f is a radiographic image (the data), and u describes an object to be
reconstructed from the radiograph.

The resulting Euler-Lagrange equation is

0 = −∇ · ∇u

|∇u| + λT ∗(Tu− f). (7)

Backing up one step, this is because in the directional derivative, the effect
of the chain rule is to pass the operator on to v:

Dv

(
(Tu− f)2

)
= 2(Tu− f)Tv; (8)

we then isolate v by moving T over to T ∗ on the other side of the L2 inner
product. All this clearly depends on T being linear.

To avoid division by zero, the |∇u| in the denominator is usually replaced
by

√
|∇u|2 + ε for some small ε > 0. This not only adds an extra parameter

to worry about (though one that is not terribly sensitive), but means that
the computed minimizer will never be the true minimizer of F .

1.3 Gradient descent

Now we turn to the question of how to find the minimizer of F . The simplest
approach is gradient descent. We can formulate this as the PDE ut = −F ′(u).
This is solved iteratively by starting with some u0, then solving

un+1 − un

∆t
= −∇ · ∇un

|∇un|
+ λT ∗(Tun − f) (9)

for some small ∆t. A more sophisticated approach is to find the best ∆t for
each n (“at each timestep”), as that which gives the greatest decrease in F .

Gradient descent is simple to understand and implement, but converges
slowly. The closer un is to the minimum, the slower the convergence.
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1.4 Lagged diffusivity

An algorithm that converges faster is lagged diffusivity. It is obtained from
the Euler-Lagrange equation by “lagging” the nonlinear term:

0 = −∇ · ∇un+1

|∇un|
+ λT ∗(Tun+1 − f). (10)

Given un, the equation is linear in un+1. This iteration has been proven
to converge (assuming T has trivial nullspace). If we call G the operator
−∇ · ∇

|∇un| + λT ∗T , then un+1 is the solution to the equation G(un+1) =
T ∗f . Supposedly, one gets better numerical performance from instead solving
un+1 = un −G−1(G(un)− T ∗f).

1.5 Other data fidelity terms

The L2 data fidelity term is most appropriate when the noise in f is additive,
Gaussian noise. In the case of radiography or when f is obtained by counting
particles, f will obey a Poisson distribution. The noise is neither additive
nor multiplicative, and is referred to a “Poisson noise.” In this case, the
best data fidelity term is

∫
(u − f log u). It is unusual in that it doesn’t

come from a norm, and can take on negative values. It is, however, bounded
below, with the minimum being when u = f . With an operator, it would be∫

(Tu− f log(Tu)). The Euler-Lagrange equation becomes

0 = −∇ · ∇u

|∇u| + λT ∗
(

1− f

Tu

)
. (11)

1.6 Dual algorithms

We are minimizing a functional defined in terms of TV (u), which itself is
defined in terms of a maximum. Convexity arguments allow one to inter-
change the order of the optimizations. The inner minimization has an Euler-
Lagrange equation that can be solved explicitly and subsituted back in. The
outer maximization then becomes the optimization problem to solve. The
condition that ‖g‖∞ ≤ 1 becomes a constraint, but one for which the La-
grange multiplier can be solved for. One then arrives at a new algorithm
that solves for g, from which one can obtain u. Its chief advantage is there
is no concern with division by zero, and no need to introduce ε. It thus also
gives a minimizer to F itself instead of an approximation.
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1.7 Radiographic corrections

In the case of Abel inversion, the operator T maps object density (given by
u) to “areal density,” mass per unit area. This is closely related to what one
would expect to measure with a radiograph, namely transmission (such as,
how much X-ray intensity goes through the object to the detector). One can
try to translate radiograph transmission into an areal density, which becomes
f for the total-variation regularized Abel inversion process. However, there
are reasons to try to use the radiograph intensity itself for f , or at least
something closer than areal density.

Another way to look at this is that the Abel transform is a linear ap-
proximation to the radiographic process, but we would like to use a better,
nonlinear approximation. An improvement is to compose with T a function
of the form

h(t) = eγ1t
(
1− eγ2/t

)
, (12)

where γ1 and γ2 are constants. On the one hand, h ◦ T is nonlinear. On the
other hand, it is differentiable, and the Euler-Lagrange equation can still be
written explicitly.

One framework for dealing with algorithms involving nonlinear functions
and/or novel data fidelity terms is to work in terms of a general data fidelity
term,

∫
D(u, f). Sometimes this makes things clearer.

1.8 Staircase reduction

One problem with TV -based methods is staircasing. This has to do with
the fact that TV (u) depends only on how much u varies, and not on how.
In particular, discontinuities are not penalized. For many purposes, this is
a good thing, as it allows sharp edges to be obtained. However, when f is
noisy, in regions where u should vary smoothly, the obtained u will often
instead resemble a step function.

A fix for this is to decompose u into u1 + u2, and minimize instead

α1

∫
|∇u1| + α2

∫
|∆u2| +

∫
D(u1 + u2, f). (13)

Note that λ is replaced by the two parameters α1, α2. One then gets two
Euler-Lagrange equations, one for u1 and one for u2, the latter involving 4th-
order derivatives. One can then use gradient descent, alternating between
the two equations with each (or every several) timestep(s). A dual version
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of the algoritm also exists. This has been done with L2 data fidelity term as
well as one other term I won’t get into, but not Poisson or general terms. A
simpler version uses |∆u2|2 instead of |∆u2|.

2 Possible Tasks

There are several issues to explore, both computational and theoretical. We
could work on any one or combination of the following:

1. implement gradient descent for Abel inversion with nonlinear correc-
tions, with an L2 data fidelity term, Poisson data fidelity term, or both.
This would at least be good enough for a technical report that would
find many interested LANL readers, and may be publishable.

2. implement staircase reduction for Abel inversion, with L2 or Poisson
data fidelity terms, with or without nonlinear correction.

3. formulate analogs of lagged diffusivity for other data fidelity terms, and
try to prove that they converge. Success would mean a paper. Success
for a general data fidelity term, even allowing only linear operators,
would be a strong paper.

4. numerical implementation of the previous.

5. other?

2.1 Notes and references

I’m including several papers. It certainly isn’t necessary to read every one
or pay attention to every detail.

• two papers on TV-Abel inversion, asaki-2005-abel.pdf and asaki-2005-
abel2.pdf. The first pays more attention to the theory, the second to
the implementation.

• a paper on TV-regularized differentiation, chartrand-2005-numerical.pdf.
A nice example of regularizing a noise-amplifying process, and includes
a lagged diffusivity implementation (though briefly).

6



• a paper with the Poisson data fidelity term, le-2005-variational.pdf.
It includes a derivation of how the data fidelity term arises from the
assumption of Poisson noise.

• a lengthy paper dealing with staircase reduction, and other topics,
cam05-28.pdf.

• a very preliminary draft of a paper concerning dual algorithms and
general data fidelity, general.pdf. It is incomplete and not well written
yet. It is in the context of the dual algorithm approach above, but it
illustrates how one can go about dealing with a general data fidelity
term. Also, if you ignore how G comes about, it gives an approach for
proving convergence in a general context, which may be applicable to
the lagged diffusivity algorithm.

• a paper giving the dual algorithm referred to at length in the previous,
chambolle.pdf. I include it in case it helps make the previous make
more sense.

• there are no good references for a proof of the convergence of the lagged
diffusivity algorithm, even for L2 data fidelity with no operator. Proofs
exist, but are very ad hoc and hard to follow. All are very particular to
the L2 case. I imagine a successful proof coming more along the lines
of the approach in general.pdf.

• Curt Vogel’s book gets into the details of numericaly implementing the
lagged diffusivity algorithm. I’ll leave my copy on my desk in case you
don’t have one.

7


